LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

FIRST SEMESTER – NOVEMBER 2007

ST 1808 - ANALYSIS

BB 12

Date : 25/10/2007 Time : 1:00 - 4:00 Dept. No.

Max.: 100 Marks

SECTION – A

Answer ALL questions.

(10 x 2 = 20 marks)

- 1. Define a metric on \mathbb{R}^n and verify that it satisfies the conditions for a metric.
- 2. Let (X , ρ) be a metric space . Then show that a sequence in X cannot converge to two limits.
- 3. Let ρ and σ be two metrics on X. Then show that ρ and σ are equivalent if \exists positive constants λ and μ such that $\lambda \rho \leq \sigma \leq \mu \rho$.
- 4. Let (X, ρ) be a metric space. Obtain the open ball when (i) $X = R^1$ (ii) $X = R^2$ and (iii) $X = R^3$.
- 5. State any three properties of a linear function.
- 6. Define a contraction mapping and show that it is continuous.
- 7. Give an example of sequences $\{x_n\}$ and $\{v_n\}$ satisfying the relations: (i) $x_n = O(v_n)$ (ii) $x_n = o(v_n)$ and (iii) $x_n \sim v_n$.
- 8. State D`Alemberts ratio test for the convergence of a series of complex terms.
- 9. Illustrate that pointwise convergence does not imply uniform convergence of a sequence of functions.
- 10. Show that if $f_1(x) \leq f_2(x)$; $a \leq x \leq b$, then

$$\int_a^b f_1 \, \mathrm{dg} \leq \int_a^b f_2 \, \mathrm{dg} \; .$$

SECTION – B

Answer any FIVE questions .

 $(5 \times 8 = 40 \text{ marks})$

- 11. Let $X = R^2$. Take $x_n = (3n/(2n+1), 2n^2/(n^2-2));$ n = 1,2,... Show that (i) $x_n \rightarrow (\frac{1}{2}, 2)$ as $n \rightarrow \infty$. (ii) $x_n \rightarrow (3/2, 2)$ as $n \rightarrow \infty$.
- 12. Prove the following:(i) If G in X is open, then G' is closed.(ii) If F in X is closed, Then F' is open.
- 13. Let (X, ρ) be any metric space and $a \in X$ be fixed. Define $g: X \to R^1$ as $g(x) = \rho(a, x)$; $x \in X$. Then prove that g is continuous on X.
- 14. Let (X, ρ) be any metric space and let f_i , i = 1, 2, ..., n be functions from X to R¹ . Define $f = (f_1, ..., f_n) : X \to R^n$ as $f(x) = (f_1(x), ..., f_n(x))$. Then show that f is continuous at $x_0 \in X$ iff f_i is continuous at $x_0 \forall i = 1, 2, ..., n$.

15. State and prove Banach's fixed point theorem regarding contraction mapping.

 16. Prove that the number Λ is the upper limit of { x n } iff given ε > 0 (i) x n < Λ + ε for sufficiently large n. (ii) x n > Λ - ε for infinitely many n. 		
then the series may		
n show that f is continuous		
SECTION – C		
= 40 marks)		
s open. osed. (10)		
ïne , y) ∈ E. (10)		
W be a ree ntinuous. θ }.		
(16) (4)		
onverges is at c , (10)		
but		
(10)		
f g. point c, (16) s = f. (4)		